Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury.
نویسندگان
چکیده
Growing evidence suggests that galectin-3 is involved in fine tuning of the inflammatory responses at the periphery, however, its role in injured brain is far less clear. Our previous work demonstrated upregulation and coexpression of galectin-3 and IGF-1 in a subset of activated/proliferating microglial cells after stroke. Here, we tested the hypothesis that galectin-3 plays a pivotal role in mediating injury-induced microglial activation and proliferation. By using a galectin-3 knock-out mouse (Gal-3KO), we demonstrated that targeted disruption of the galectin-3 gene significantly alters microglia activation and induces ∼4-fold decrease in microglia proliferation. Defective microglia activation/proliferation was further associated with significant increase in the size of ischemic lesion, ∼2-fold increase in the number of apoptotic neurons, and a marked deregulation of the IGF-1 levels. Next, our results revealed that contrary to WT cells, the Gal3-KO microglia failed to proliferate in response to IGF-1. Moreover, the IGF-1-mediated mitogenic microglia response was reduced by N-glycosylation inhibitor tunicamycine while coimmunoprecipitation experiments revealed galectin-3 binding to IGF-receptor 1 (R1), thus suggesting that interaction of galectin-3 with the N-linked glycans of receptors for growth factors is involved in IGF-R1 signaling. While the canonical IGF-1 signaling pathways were not affected, we observed an overexpression of IL-6 and SOCS3, suggesting an overactivation of JAK/STAT3, a shared signaling pathway for IGF-1/IL-6. Together, our findings suggest that galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury.
منابع مشابه
Temporal Characterization of Microglia/Macrophage Phenotypes in a Mouse Model of Neonatal Hypoxic-Ischemic Brain Injury
Immune cells display a high degree of phenotypic plasticity, which may facilitate their participation in both the progression and resolution of injury-induced inflammation. The purpose of this study was to investigate the temporal expression of genes associated with classical and alternative polarization phenotypes described for macrophages and to identify related cell populations in the brain ...
متن کاملResident microglia, rather than blood‐derived macrophages, contribute to the earlier and more pronounced inflammatory reaction in the immature compared with the adult hippocampus after hypoxia‐ischemia
The mechanisms of neuronal injury after hypoxia-ischemia (HI) are different in the immature and the adult brain, but microglia activation has not been compared. The purpose of this study was to phenotype resident microglia and blood-derived macrophages in the hippocampus after HI in neonatal (postnatal day 9, P9) or adult (3 months of age, 3mo) mice. Unilateral brain injury after HI was induced...
متن کاملHemin Induces the Activation of NLRP3 Inflammasome in N9 Microglial Cells
Background: Hemin is an important sterile component that induces a neuroinflammatory response after intracerebral hemorrhage, in which NLRP3 inflammasome activation has also proved to be involved. Although microglial activation acts as a key contributor in the neuroinflammatory response, the relationship between hemin and NLRP3 in microglia remains poorly understood. Objective: To investigate w...
متن کاملP 116: The Effect of Galectin-3 and Lanthionine Ketimine Ester in Neural Recovery after Spinal Cord Injury
Spinal cord injury (SCI) is a trauma that disturbs motor, sensitive and autonomic function and directly impacts the quality of life. After physical damage, releasing of pro-inflammatory proteins and cytokines occurs and with collaboration of immune system cells, an immune response begins in the brain tissue. The result of neuroinflammation is edema, apoptosis and release of axonal growth inhibi...
متن کاملRegulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1.
Microglia are the immune cells of the nervous system, where they act as resident macrophages during inflammatory events underlying many neuropathological conditions. Microglia derive from primitive myeloid precursors that colonize the nervous system during embryonic development. In the postnatal brain, microglia are initially mitotic, rounded in shape (amoeboid), and phagocytically active. As b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 30 شماره
صفحات -
تاریخ انتشار 2012